
What is a Shell?

Why is Shell so Popular?

What are the Disadvantages to Shell Scripts?

When was Shell Created?

How Shell Got Its Name

Shell Features

How Shell has Evolved over the Years

Who uses Shell?

Shell Examples

Careers with Shell

Conclusion

If you are working on a Microsoft, Apple, or Linux operating system (OS), you are using

shell scripts, perhaps without knowing it. In fact, you interact with shells every single time

you boot up your Linux OS.

Shell scripts help programmers, data scientists, and casual users save time and avoid

repetitive tasks with automation. For example, scripts can perform daily backups, install

patches, monitor systems and activity, and perform routine audits.

Shells read fairly intuitive human-ready commands and turn them into something the

system will understand.

What is a Shell?

A shell is a type of computer program called a command-line interpreter that lets Linux

and Unix users control their operating systems with command-line interfaces. Shells allow

users to communicate efficiently and directly with their operating systems.

Shell scripting is not a single language but, because it uses some natural language

commands, it’s easy to learn, even without a programming background. However, each

shell scripting dialect is considered a language, and if you plan more complex activities,

shells take a lot of practice.

Shell scripting is one of the simplest ways to set up automation. Using Linux or Unix

commands, shell scripting gives data scientists, DevOps, and TechOps people conditional

and loop control structures to repeat commands.

Shell scripts don’t always go by the same name. Sh, Bash (the most common), csh, and

tesh are all shell scripts. While in IBM’s VM operating system, they’re called EXEC; in DOS,

shell scripts are called batch files.

A shell has two categories, command-line shell and graphical shell. Command-line shells

are accessed using command-line interfaces where systems receive input in human-

readable commands and then use the command-line interfaces to display the output.

Graphical shells use a graphical user interface (GUI) to perform interactions and essential

operations such as opening, closing, and saving files.

Here are some sample shell commands:

To find out what directory you’re in: pwd

To find a command in the manual: man command

To make a text file scrollable: less file 1 or more file 1

Different types of shells

Bourne Shell

As cool as the name may imply, the Bourne shell has nothing to do with spies and high-

speed car chases. The Bourne shell, the second most commonly used Unix shell, was

created in 1979 by Stephen Bourne at Bell Labs. Like its predecessor, the Thompson shell,

Bourne’s executable filename is sh.

The Bourne shell is the default shell of the Solaris OS. Despite its age, the Bourne shell is

popular today because of its speed and compactness. However, the Bourne shell isn’t

very interactive and can’t recall its command history. It also lacks logical and arithmetic

expression.

Bourne prompts include:

Command full-path: /bin/sh and /sbin/sh

Non-root user default: $

Root user default: #

command-line

The C shell, filename csh, and its predecessor filename tcsh, is another Unix shell from the

late 70s. It was created by Bill Joy, who at the time was a graduate student from the

University of California, Berkeley.

Unlike the Bourne shell, the C shell is interactive and recognizes command history and

aliases. C shells also include C-like expression syntax and built-in arithmetic.

command-line prompts include:

Command full-path: /bin/csh

Non-root user default hostname: %

Root user default hostname: #

KornShell

The KornShell, filename ksh, was developed in the early 1980s by David Korn at Bell Labs.

KornShell includes many of the features of the C shell, and it’s a super-set of, and

therefore is backward-compatible, with the Bourne shell.

The KornShell runs faster than the C-shell. It runs Bourne shell scripts and features C-like

arrays, functions, and string-manipulation facilities. In addition, it features built-in

arithmetic.

KornShell prompts include:

Command full-path: /bin/ksh

Non-root user default: $

Root user default: #

GNU Bourne-Again shell

The GNU Bourne-Again, or Bash, shell, is an open-source alternative to the Bourne shell. It

was designed by Brian Fox for the GNU Project and was released in 1989. Not only is it

fully compatible with the Bourne shell, it takes many of the best features from KornShells

and C shells. The GNU Bourne-Again shell has automatically mapped arrow keys for

editing and command recall.

GNU Bourne-Again prompts include:

Command full-path: /bin/bash

Non-root user default prompt: bash-x.xx$

Root user default: bash-x.xx#

What shell scripting does

This analogy is a bit simplistic, but imagine shell scripts as autofill for programmers.

Instead of typing commands into a keyboard one at a time, shell uses sequences of

commands in single scripts that users can initiate with a simple filename in the

command-line. Shell scripts perform program execution, text wrapping, and file

manipulation.

Shell scripting can perform a number of tasks, including monitoring tasks like disk usage,

performing backups, creating command tools, manipulating files, running programs,

linking programs together, completing batches, etc.

Main alternatives to shell

In IBM’s VM operating system, they’re called EXEC; in DOS, shell scripts are called batch

files. Those are still shell scripts, though. Other scripting languages, such as Javascript,

Python, Perl, and TCL are also scripting languages. Not surprisingly, computer

professionals all have their favorites, and we’ll get to the upsides and downsides to shells

in a bit.

Why is Shell so Popular?

Shell is common on nearly every OS because they are efficient and easily updatable. It

monitors your computer’s system and performs routine backups without you having to

think about it.

There’s no need to switch syntaxes because shell’s syntaxes and commands are identical

to those entered in the command-line. In addition, it’s easy and quick to write shell

scripts: they start quickly and they’re easy to debug.

What are the Disadvantages to Shell Scripts?

Shell scripts can be error-prone and difficult to diagnose when problems occur. Shells are

not designed for complex or large tasks, and they are slow to execute. Additionally, shells

don’t offer much data structure, and there can be syntax or design flaws.

When was Shell Created?

The first shell script was created in the early 1960s by MIT computer staff member Louis

Pouzin. His first command-line was RUNCOM, which liberated computer scientists from

repetitive tasks such as compiling, updating, renaming, and moving.

While Pouzin wasn’t a computer language expert, or perhaps because he wasn’t, he

believed that command-lines could be a language in and of themselves.

By the mid-1960s, Pouzin teamed up with British scientist Christopher Strachey. Strachey

designed a macro-generator that served as a base for Pouzin’s command language,

which ran on what was at the time the state-of-the-art Multics operating system.

How Shell Got Its Name

Pouzin named his new language “shell” because it is the outermost layer of operating

systems.

Shell Features

Shells are popular among programmers because they are concise. That doesn’t mean

they’re basic, however. Shells offer several features, including:

Background processing

One of the biggest benefits to shell scripts is that they can run in the background.

Depending on the command, shells can run in the foreground or the background.

Foreground processes are visible on the screen and can only run sequentially.

Background processes do not appear on the screen and can run non-sequentially. To run

a shell script in the background, users simply need to add an ampersand (&) at the end of

the script.

Wildcard substitutions

Wildcard substitutions allow systems to process more than one command at a time or to

find snippets of phrases from text files. For example, * tells the system to match any

string, even empty strings. ? matches a single character, [example] matches any

character (“example” is just an example) and [1-9] (another example) instructs the shell

to match characters within the range.

Command aliases

Shell aliases are shortcut commands. Some aliases are a single word, and others are a

single letter. To see the list of aliases, users only need to enter ·alias.

Command history

There are a lot of ways shells save time and effort, but one particularly convenient

feature is its command history. Instead of retyping commands, the history command

shows all the commands that were used during that session.

Filename substitution

Filename substitution is also known as “globbing.” When a word contains characters such

as ?, *, or [, or begins with ~, the shell will see the word as a pattern and will be replaced

by an alphabetical list of filenames to match the pattern.

Input/output redirection

Input/output (i/o) redirection allows users to swap the standard input (stdin) and

standard output (stdout) to be associated with the display screen, keyboard, or a file.

Piping

Shell piping is another kind of redirection that sends the output of a

command/process/program to another command/process/program. This lets the

commands/processes/programs operate simultaneously and allows for continuous data

transfer without having to pass through the display screen or temporary text files.

Shell variable substitution

When the shell encounters an expression containing special characters, it translates the

code into something that is more recognizable for users. That process is called variable

substitutions or simply variables.

Variables are also used by more seasoned programmers. If, for example, a programmer

doesn’t know the actual values before executing a program, they can use the variable as

a placeholder before the code is ready for execution.

How Shells Vary

There are two primary sorts of shells, “shell” (sh) and “bash.” Both run within the Unix

operating system. Shell is a generic name for scripting in any shell. As the name implies,

bash (Bourne Again Shell) is an improved and extended shell.

Bash uses up-gradation for more functionality, supports job controls, is easier to use than

sh, and supports command history. Sh does not support command history; its scripting

works in any shell and is more portable.

How Shell has Evolved over the Years

Over the years, shells have evolved and stayed more or less the same. The Bourne shell

was a big step forward from the original Thompson shell, but many of the original

functions remain. Of course, computers and our expectations have all changed.

There are potentially as many shells as there are users; but fundamentally, there are two

types of shells – command-lines or Bourne. Anything else is a dialect rather than a

different language.

Unix shells

Unix shells are the original and they are still going strong. Unix shells work on Unix and

Unix-related operating systems, such as Macs.

command-lines

command-lines (csh) are the most common Unix shells. command-lines excel at

interactive work, including aliases, cdpath, job control, path hashing, directory stacks, etc.

They also offer editing and history features.

Tenex command-line

The Tenex command-line (tcsh) was developed by Ken Greer from Caregia Melo

University. Tenex was considered an improvement over the original command-line

version. Unlike the original C, Tenex offers command-line editing and completion, among

other features. In 1981, tsch merged with csh.

Korn shells

Korn shells (ksh) are another Unix shell but it’s sort of a compromise between C and

Bourne shells, with backward compatibility with the latter. The Korn shell was developed

in the early 1980s by David Korn at Bell Labs.

Bourne again shells

The Bourne Again shell (Bash) is an open-source Unix shell that was written in the late

1990s by Brian Fox for the GNU project as an upgrade to the Bourne shell.

Exotic shells

While they’re all built on C or Bourne shells, programmers have designed 100s if not

1,000s of different dialects. Some are useful, and some are simply fun.

Who uses Shell?

Almost anyone who uses a computer benefits from shell, but they are especially

beneficial for system administrators, DevOps people, programmers, and data scientists.

Shells are used to automate tasks and applications, install packages, backup or restore

data, and of course for programming.

Shell Examples

Shells are as basic or as complex as the user desires. A simple bash greeting, for example,

reads, echo “hello $USER”, while complex shell scripts are almost limitless. Here are

some basic examples:

Example 1: Using a while loop in bash

Create a file in bash using a suitable editor. Here we use vi editor.

$ vi example.sh

This opens an editor with a file named example.sh

Press the 'i' key to start inserting the code:

#!/bin/bash#!/bin/bash
valid=truevalid=true
count=1count=1
while [$valid]while [$valid]
dodo
echo $countecho $count
if [$count -eq 10];if [$count -eq 10];
thenthen
breakbreak
fifi
((count++))((count++))
donedone

P OW E R E D B Y DATAC A M P WO R KS PAC E C O P Y C O D E

Press escape follwed by ':wq' to save and return to the terminal.

Execute by using bash example.sh

Example 2: Accepting inputs from the terminal by users

Create another file in vi editor:

$vi example2.sh

Enter code in the editor:

#!/bin/bash#!/bin/bash
echo "Enter first number"echo "Enter first number"
read xread x
echo "Enter second number"echo "Enter second number"
read yread y
((sum=x+y))((sum=x+y))
echo "The result of addition = $sum"echo "The result of addition = $sum"

P OW E R E D B Y DATAC A M P WO R KS PAC E C O P Y C O D E

Execute by using bash example2.sh

To learn more useful shell commands for data science, check out this tutorial on Useful

Shell Commands.

Careers with Shell

Rather than a career path, think of shell scripting as a useful tool in a data scientist’s

arsenal. Data professionals of all kinds need to know multiple languages (or at least they

should), and shell scripts help them use the languages more efficiently.

Still, some companies have some roles that specifically require shell scripting. The

average salary is around $78,000. That said, shell scripts are a building block to roles like

system administrators, which can bring in six-figure salaries.

Conclusion

Shell is like a string that runs through every programming language. Complex commands

are boiled down to concise and intuitive shorthands. Understanding shell is an important

skill for any data scientist or computer engineer. Learn about shell in DataCamp's

Introduction to Shell course.

Shell FAQ's

What is the kernel?
The kernel is the most essential part of the operating system. The kernel is responsible

for allocating memory and time to the computer’s programs, and it manages the

communications and filestore in response to system calls.

What is the shell?

What are the benefits of shell?

What are the downsides to shell?

What is the difference between Unix and Linux?

What shells are commonly used on Linux and Unix systems?

What is shell syntax?

What is an interpreter?

What is a compiler?

How do you execute a shell file?

LEARN DATA COURSES WORKSPACE

CERTIF ICATION

RESOURCES PLANS SUPPORT ABOUT

Home Blog Data Science

What is Shell?
Wendy Gittleson • May 9, 2022 • 13 min read

Discover what Shell is and how learning it can make you a more
efficient and versatile data scientist.

Learn Python

Learn R

Learn SQL

Learn Power BI

Learn Tableau

Assessments

Career Tracks

Skill Tracks

Courses

Data Science
Roadmap

Python Courses

R Courses

SQL Courses

Power BI Courses

Tableau Courses

Spreadsheet
Courses

Data Analysis
Courses

Data Visualization
Courses

Machine Learning
Courses

Data Engineering
Courses

Get Started

Templates

Integrations

Documentation

Certifications

Data Scientist

Data Analyst

Hire Data
Professionals

Resource Center

Upcoming Events

Blog

Tutorials

Open Source

RDocumentation

Course Editor

Book a Demo with
DataCamp for
Business

Pricing

For Business

For Classrooms

Discounts, Promos
& Sales

DataCamp
Donates

Help Center

Become an
Instructor

Become an
Affiliate

About Us

Learner Stories

Careers

Press

Leadership

Contact Us

Privacy Policy Cookie Notice Do Not Sell My Personal Information Accessibility Security Terms of Use

© 2022 DataCamp, Inc. All Rights Reserved.

Win up to $1500 while you learn data skills and earn XP
XP Learner Challenge ends August 31

BLOG Articles Podcast Tutorials Cheat Sheets Write for usCategory

WE'RE HIRING Sign In Get Started

https://www.datacamp.com/community/tutorials/shell-commands-data-scientist
https://multicians.org/shell.html
https://www.ibm.com/docs/en/aix/7.2?topic=administration-operating-system-shells
https://www.amazon.com/Wicked-Cool-Shell-Scripts-Taylor/dp/1593270127
https://www.linuxtopia.org/online_books/advanced_bash_scripting_guide/moreadv.html
https://www.datacamp.com/workspace
https://www.datacamp.com/workspace
https://www.payscale.com/research/US/Skill=Shell_Scripting/Salary
https://www.datacamp.com/courses/introduction-to-shell
https://www.datacamp.com/tutorial/shell-commands-data-scientist
https://www.facebook.com/datacampinc/
https://twitter.com/datacamp
https://www.linkedin.com/school/datacampinc/
https://www.youtube.com/channel/UC79Gv3mYp6zKiSwYemEik9A
https://www.instagram.com/datacamp/
https://www.datacamp.com/
https://www.datacamp.com/blog
https://www.datacamp.com/blog/category/data-science
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.datacamp.com%2Fblog%2Fwhat-is-shell&title=What%20is%20Shell%3F%20&summary=What%20is%20Shell%3F%20&source=https%3A%2F%2Fwww.datacamp.com%2Fblog%2Fwhat-is-shell
https://www.facebook.com/dialog/share?app_id=408074879325153&display=page&href=https%3A%2F%2Fwww.datacamp.com%2Fblog%2Fwhat-is-shell&redirect_uri=https%3A%2F%2Fwww.datacamp.com%2Fblog%2Fwhat-is-shell"e=What%20is%20Shell%3F%20&hashtag=%23Datacamp
https://twitter.com/intent/tweet?text=What%20is%20Shell%3F%20&url=https%3A%2F%2Fwww.datacamp.com%2Fblog%2Fwhat-is-shell&via=dataCamp
https://www.datacamp.com/blog
https://www.datacamp.com/podcast
https://www.datacamp.com/tutorial
https://www.datacamp.com/cheat-sheet
https://datacamp-1.gitbook.io/community-submissions/
https://www.datacamp.com/search-resources
https://www.datacamp.com/
https://www.datacamp.com/careers

